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BACKGROUND FOR THIS WHITE PAPER 
 

The 2000 Federal Columbia River Power System (FCRPS) Biological Opinion (FCRPS 
Biop) evaluated whether the operation of the FCRPS, when combined with survival rates 
expected to occur in all other life stages of ESA listed salmonids, would result in a “high 
likelihood of survival and a moderate-to-high likelihood of recovery.”  This qualitative 
determination was informed by quantitative estimates for several evolutionarily significant units 
(ESU).  Specifically, NOAA Fisheries evaluated:  

• whether or not there would be a 5% or lower probability of absolute extinction of natural 
spawners within 24- and 100-year periods as a “metric indicative of survival;” 

• whether or not there would be at least a 50% probability of the 8-year geometric mean 
natural spawners being equal to, or greater than, interim recovery abundance levels in 48 
and 100 years as a primary “metric indicative of recovery;” 

• and whether or not there would be at least a 50% likelihood of the annual population 
growth rate (“lambda”) being equal to, or greater than, 1.0 as an alternate “metric 
indicative of recovery” for populations lacking interim recovery abundance goals. 
 
The basis for each of these indicator metrics was an analysis of the population growth 

rate associated with time series for relevant spawning aggregations.  Population growth rate was 
calculated using the methods described in McClure et al. (2003).  The Biological Opinion 
specified that several tests based on population growth rate would be conducted in 2005 and 
2008 to ensure that implementation of the Biological Opinion was on track and that populations 
were not declining further.  The Biological Opinion assumed that by 2005 there would be more 
information about methods of calculating population growth rate, so it specified the following: 
 

“NMFS anticipates that methods of assessing annual population growth rates will have 
been refined, based on NMFS’ research efforts, those of the Action Agencies, or those of 
independent scientists.  In anticipation of this normal progress in scientific methods, 
NMFS does not now define a specific method by which population growth rate will be 
determined for its mid-point evaluations.  By March 1, 2005, NMFS will choose the most 
appropriate method(s) to estimate population growth rate from the peer-reviewed 
literature, based on collaboration with the Action Agencies, USFWS, and the state and 
Tribal comanagers.” 

 
In June 2003, the Biological Opinion was remanded in National Wildlife Federation v. 

NMFS.  NOAA Fisheries is currently in the process of revising the Biological Opinion and re-
evaluating the effects of FCRPS operations and offsite mitigation activities.  To facilitate this 
process, the NOAA Fisheries Northwest Regional Office (NWRO) requested that the Northwest 
Fisheries Science Center (NWFSC) conduct the above-referenced review of population growth 
rate estimation methods in 2003.  In addition, the NWRO requested that that the NWFSC review 
related methods of characterizing population trends, especially those that had been suggested as 
alternatives to “lambda” estimation in comments on the draft of the original Biological Opinion 
and in comments or litigation since the Biological Opinion was issued. 
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INTRODUCTION 
 

The purpose of this report is to review and discuss methods for estimating and presenting 
population trends and extinction risks for Columbia River salmonid populations to support 
management decisions, such as the ESA Section 7 determination in the 2000 FCRPS Biological 
Opinion and the anticipated 2005 and 2008 check-in tests.  This report reviews research since 
2000, which tests and validates diffusion approximation methods for estimating population 
trends and risks.  This review summarizes information from the following publications: 
 
Holmes, E. E.  2004.  Beyond theory to application and evaluation: diffusion approximations for 

population viability analysis.  In press in Ecological Applications. 
Fagan, W. F., E. E. Holmes, J. J. Rango, A. Folarin, J. A. Sorensen, J. E. Lippe, and N. E. 

McIntyre.  2003.  Cross-validation of quasi-extinction risks from real time series: an 
examination of diffusion approximation methods.  Pre-print. 

McClure, M., E. Holmes, B. Sanderson, and C. Jordan.  2003.  A large-scale, multi-species risk 
assessment:  anadromous salmonids in the Columbia River Basin.  Ecological 
Applications 13: 964-989. 

Holmes, E. E. and W. F. Fagan. 2002.  Validating population viability analysis for corrupted data 
sets.  Ecology 83: 2379-2386 

Holmes, E. E.  2001.  Estimating risks in declining populations with poor data.  Proceedings of 
the National Academy of Science 98: 5072-5077. 

 
Summary of work and changes as they pertain to the methods in FCRPS Biop 
 
Changes in the methods for estimating trend and risk: 
 1)  Running sum filter has been standardized to use a simple sum of four consecutive 
spawner counts.  The work leading up to Holmes & Fagan (2002) clarified that this was better 
than the age-structure based running sum that was originally used. 
 
Cross-validation work 
 The bulk of the work has focused on validating the methods using real time series 
(Holmes & Fagan 2002, Fagan et al. 2003) and more realistic simulations that include density-
dependence (Holmes 2004).  Also the underlying assumptions of the diffusion model were tested 
using simulations of salmon models with density-dependence (Holmes 2004). 
 
Expressing uncertainty 
 Holmes & Fagan (2002) test the variability in parameter estimates from the Dennis-
Holmes method and found that the variability is properly estimated.  Holmes (2004) begins 
looking in-depth at how to express uncertainty in a way that it can best inform regulatory 
decision-making.  Confidence intervals are commonly given, but are not very useful beyond 
showing that there is high or low uncertainty.  Bayesian approaches are explored in Holmes 
(2004).  A Bayesian metric is also used in McClure et al. (2003), specifically the probability that 
λ is less than 1.0 or less than 0.9. 
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THE NATURE OF POPULATION TRAJECTORIES AND RISK ESTIMATION 
Real populations do not grow or decline at fixed rates, but rather show year-to-year 

variability in population growth rates, which leads to a population trend that varies about some 
long-term growth rate.  Figure 1 shows an example of three population trends that each have the 
same long-term trend (5% per year decline) and the same year-to-year variability.  Even though 
the population trends were generated with the same underlying dynamics, the trajectories are 
different.  This is nature of populations: random chance means that there are a range of different 
possible population trajectories given some underlying population dynamics.  Even though we 
cannot predict exactly what will happen in the future, if we could estimate the underlying 
dynamics governing the population trajectories, we could estimate the probability of different 
futures, i.e. we could estimate the probability of reaching critical thresholds.  We can also 
estimate whether the population has long-term declining dynamics.  To do this, we will need to 
estimate the following: the long-term rate of decline (or growth), the year-to-year variability in 
yearly population growth, and the amount of corruption in our data.  Within the population 
dynamics literature, the year-to-year variability in yearly population growth is termed ‘process 
error’; note that it is not technically ‘error’ in the layman’s sense of the word, but rather 
variability.  The rest of the variability is termed ‘non-process error’ and this includes actual 
observations errors.  For the purpose of this review, one can think of process error as the 
variability that drives the long-term variability of future population size and the non-process 
error as the data corruption that is preventing us from estimating the process error. 

0 10 20 30 40 50
0

0.5

1

1.5

0 10 20 30 40 50
0

0.5

1

1.5

 

R
e

la
ti

ve
 P

o
p

u
la

ti
o

n
 S

iz
e

0 10 20 30 40 50
0

0.5

1

1.5

Year
 

Figure 1.  Sample simulated population trajectories from a population with average 5% yearly 
decline.  The underlying population dynamics are identical.  The differences are due to chance. 
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The term λ denotes the long-term rate of population decline (or growth).  It is simply the 
long-term trend that you would observe if you had a very, very long time series of the 
population.  The term λ is the standard notation in the conservation biology literature.  λ = 1 
means stable, λ = 1.01 means roughly increasing 1% per year, and λ = 1.05 means roughly 
increasing 5% per year.  Similarly, λ = 0.99 and λ = 0.95 mean roughly declining 1% and 5% per 
year, respectively.  Note that we can only estimate λ; we never know the true λ.  Our estimates 
may be unbiased, but that still means that there is a 50/50 chance that the true λ is above or 
below our estimate. 

One of the most common questions is “If λ is the population trend, why not just present 
the overall trend observed in the data, such as a regression of log numbers versus time?” as 
opposed to going through the analysis based on theory concerning the dynamics of population 
trajectories, which is presented in the next section.  There are two main reasons why this is 
insufficient. 

1)  We need to estimate uncertainty.  The trend tells you what happened but does not by 
itself tell you how likely it is that this trend happened by chance and that the long-term dynamics 
are actually quite different.  For example, suppose we collect data on a population that has a true 
long-term average rate of decline of 12% yearly.  Figure 2 shows an example of the population 
trend observed from 20-year consecutive time series from this population.  Segment 1 is from 
year 1-20, segment 2 is from year 2-21, etc.  The wavy lines show the estimates using different 
methods for estimating the trend; the true value is the straight dashed line.  The solid line (“ML”) 
is a simple regression of log natural abundance.  The wavy dashed line shows the runsum 
method used in McClure et al. (2003) and the Biop.  There is much variability in the observed 
trend in a 20-year segment.  This variability is an unavoidable aspect of analyzing stochastic 
population processes.  Population dynamics theory allows us to estimate this year-to-year 
variability and thus estimate how likely it is that a particular observed trend came from a 
population with a particular true λ (such as an increasing or declining population).  But to do 
this, the estimate of the underlying process error in the population dynamics is needed.  A natural 
response would be to argue that standard regression analyses will give you the uncertainty of the 
estimated trend, but unfortunately such analyses attribute all error to non-process error and will 
give you incorrect uncertainty estimates. 

2)  We need to estimate probabilities of crossing critical thresholds.  The trend by itself 
does not give much information about the probability of dropping below critical population sizes.  
We cannot simply extend the trend into the future and see when our line crosses the threshold.  
Populations vary from year to year and even a population that has a positive growth rate still has 
some probability of dropping below the critical threshold by chance.  To estimate this 
probability, we again need to estimate the process error driving the variability in long-term 
population sizes. 

In the following section (section I), I review how the parameters driving a population 
process are estimated using diffusion approximation methods.  This section also reviews the 
extensive cross-validation work that was done to verify the applicability of these methods for 
salmon populations.  This section directly applies to the methods used in the FCRPS Biological 
Opinion.  At the end of this section, there is a discussion of alternative risk estimation 
methodologies and why they were not used.  The next section (section II) discusses work that 
goes beyond the methods used in the 2000 FCRPS Biological Opinion.  One of the challenges 
when presenting scientific analyses is presenting the uncertainty in a useful and accurate manner.  
It is tempting to use the point estimates of risk metrics (i.e. ‘this stock has a λ of 0.981’) and 
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ignore that this is a statistical estimate.  λ = 0.981 may be the most likely value given the data, 
but λ = 0.99 is probably almost equally as likely and λ = 1.01 may be entirely plausible.  Section 
II illustrates the use of probability curves as a way to formally express this uncertainty.  This is a 
standard approach in decision theory for resource management. 

 

 
Figure 2.  Estimated log(λ) from 20-year segments in a time series.  Segment 1 is year 1-20, 
segment 2 is year 2-21, segment 3 is year 3-22, etc.  This shows how the estimates vary depending 
on the segment observed.  The “runsum” method is that used in McClure et al. (2003) and for the 
Biological Opinion calculations. 

 
I.  DIFFUSION APPROXIMATION METHODS FOR POPULATION VIABILITY 
ANALYSIS 

In the last decade, diffusion approximation (DA) methods have been developed that use 
count data alone (for example, spawner counts) for the estimation of population viability analysis 
(PVA) risk metrics, such as the probability of crossing extinction thresholds, mean passage 
times, and average long-term rates of population growth or decline (Lande and Orzack 1988, 
Dennis et al. 1991).  These methods have since been used to estimate extinction risks for 
numerous species of conservation concern (Dennis et al. 1991, Nicholls et al. 1996, Gerber et al. 
1999, Morris et al. 1999, McClure et al. 2003).  The appeal of DA methods from an applied 
standpoint is their simplicity and their reliance on simple census data alone (e.g. neither age-
structure, cohort-level analyses, or total fish numbers are required).  They have become one of 
the basic quantitative tools presented in recent books on PVA methods (Morris and Doak 2002, 
Lande et al. 2003).  

Diffusion approximation methods stem from theory concerning the behavior of stochastic 
age-structured population models with no density-dependence,  
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where At is the stochastic population transition matrix, e.g. a Leslie matrix, for time t.  Note that 
most types of cohort or otherwise age-structured population simulations with no density-
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dependence are specific cases of the general model in Eq. 1.  For such models, the asymptotic 
behavior of the total population size, ∑=

i
tit nN , , is a stochastic exponential process 

(Tuljapurkar and Orzack 1980, Tuljapurkar 1989): 
big  for   ),0(normal~),exp( 2

0 tttNN ppt σεεµ += .                          [2] 

and log Nt/N0 is distributed normal with mean=µt and variance=σ2t for t big.  The parameter µ in 
Eqn. 2 determines the rate at which the median log population size, log Nt, increases through 
time, while σ2 determines the rate at which the distribution spreads, or in other words, the 
variability of potential population sizes at time t+τ.   

Diffusion approximation methods assume that Eqn. 2 holds for all τ > 0 including small τ 
and that the ε are independently and identically distributed.  This allows one to model the 
population as a diffusion process (Lande and Orzack 1988): 

)|(log

/)2/(//
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t ===
∂∂+∂∂−=∂∂ σµ

                                    [3] 

P(y) means the probability of y.  The diffusion model has the property that log Nt/N0 is 
distributed normal(mean=µt, variance=σ2t) like the stochastic exponential process it is used to 
approximate.  See Dennis et al. (1991) for a much fuller discussion of the diffusion 
approximation.  

This approximation opens a toolbox of parameterization methods for linear models with 
normal error.  It also provides analytical estimates of quasi-extinction probabilities, i.e. the 
probability of crossing a particular threshold at some time within a given time frame.  Strictly 
speaking, however, an age-structured population process is not a diffusion process.  However 
despite the assumption violations, the diffusion model approximates many types of stochastic 
age-structured population processes, as seen both from simulated and real data (Lande and 
Orzack 1988, Dennis et al. 1991, Holmes and Fagan 2002, Fagan et al. unpublished manuscript, 
Holmes 2004).  In particular as will be reviewed below, the diffusion approximation works well 
for salmon population models (Holmes 2004). 
 
Parameter estimation methods 

Diffusion approximations for a particular PVA must be carefully selected since a poor 
choice results in poor, highly biased estimates which lead to poor, highly biased risk estimates.  
Holmes (2004) discusses these issues and careful selection of parameterization methods using 
salmon data as an example.  McClure et al. (2003) presents methods for estimating log(λ) and 
σ2, which have been used by NWFSC scientists for salmon PVA.  These methods have been 
extensively validated with real and simulated salmon data (see next section). 

The basic estimation methods currently used for the Biop are presented here without 
discussion; see McClure et al. (2003) for a discussion and examples.  The methods use a running 
sum transformed time series of spawner counts defined as 

∑
=

+=
3

0i
itt OR                                                              [4] 

where Ot is the spawner count at year t.  The estimate for log(λ), which is denoted µ, is 

.3,,3,2,1for     
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The estimate of σ2 uses the rate that the variance increases within the time series: 
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 These estimators will likely appear somewhat peculiar on first introduction.  Note that the 
µ estimate is very similar to a linear regression of log population counts (typically log spawner 
counts).  Why use the estimator with a running sum transformation of the data?  Extensive 
testing described in Holmes (2001), Holmes & Fagan (2002) and especially Holmes (2004) 
indicates that the runµ̂  gives the least variable estimates of µ (see also Figure 2).  Estimation of 
the process error is an especially difficult problem.  Holmes (2004) reviews the currently 
available methods in the literature.  Again extensive cross-validation work (see especially 
Holmes 2004) found that 2ˆ slpσ  performs the best for salmon data. 

 One of the difficult problems with analyzing salmon spawner data is that hatchery fish 
are input into the stocks.  Perhaps the easiest way to see how this presents a problem for 
estimating λ is to consider the analogy of a mutual fund.  Suppose you put $1000 into a mutual 
fund 5 years ago and now you have $8000.  You would like to know what the average rate of 
return (this is λ) has been so that you can decide whether to keep you money in this fund or 
move to another.  Normally, you would just take (8000/1000)^(1/5) = 1.51, which means that 
your fund returned an incredible 51% per year.  However, your benevolent aunt has been 
automatically adding $100 a month to your brokerage account, and you need to factor this in 
(these are the hatchery fish).  Problem is you don’t know whether her monthly gift was added to 
your mutual fund (the hatchery fish reproduce) or was simply deposited to your brokerage 
account but not invested (the hatchery fish don’t reproduce).  Without this information, you can 
only deduce the range of the possible average rates of return for your mutual fund.  If not added 
to mutual fund, the rate of return was ( (8000-100*12*5)/1000 )^(1/5) = 1.15, which is still a 
nice 15% per year.  If added to the mutual fund, rate of return is found by finding the λ that 
solves:  

8000 = 1000*λ^5 + 100* ∑
=

5*12

0

12/

i

iλ , 

which is λ = 1.05 and means a rather paltry 5% per year growth.  Thus, knowing whether the 
monthly deposits were added to your mutual fund or not is a critical bit of information you need 
to evaluate how good a mutual fund you have.  This is exactly the estimation problem we have 
with hatchery fish.  We need to know whether or not they are reproducing in order to evaluate 
the underlying population growth rate.  In McClure et al. (2003) and in Holmes (2004), the 
hatchery correction is presented.  In the McClure et al. PVA, the range of λ for hatchery fish not 
reproducing versus are reproducing is shown.  For the Biological Opinion, the range of λ is 
shown for hatchery fish reproducing 20% as effectively as wild-born fish versus 80% as well as 
wild-born fish. 
 
Risk metrics 
 From the parameters µ and σ2, a number of different risk metrics can be calculated.  We 
have focused on two metrics.  The first is the median yearly growth rate or the long-term yearly 
growth rate, which is denoted λ.  Suppose you were able to observe 1000 20-year population 
trajectories with the same underlying dynamics (i.e. the same µ and σ2 parameters) and each 
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starting from the same initial size, much like Figure 1.  The trajectories would all look different 
due to chance.  The yearly growth rate you observed in the ith (out of the 1000) trajectory is 

λi = [(end population size)/(start population size)]^(1/(number of years)-1) 
The median λi from all 1000 would be exp(µ); on average 50% of trajectories would show a 
yearly growth rate greater than exp(µ) in those 20 years and 50% would show a lower growth 
rate.  An estimate of this median yearly growth rate is what we term λ.  It also happens to be the 
yearly growth you would observe from a very long time series since λi goes to exp(µ) as the 
number of years gets very large.  This is why the λ estimate is referred as an estimate of the 
median yearly growth rate or the long-term yearly growth rate.  For a particular time series with 
n years, the λ estimate is 

)/log(
4

1
)ˆexp(ˆ

13 RR
n nrun −−

== µλ                                        [7] 

The second metric is the probability of hitting a particular critical population threshold, 
Ne, within some period of time te, starting from the population size N0.  This is calculated from a 
diffusion approximation of the population process (Dennis et al. 1991): 
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The function Φ is the standard normal cumulative distribution function.  If you are interested in 
percentage-wise declines, e.g. 50%, 75% or 90%, then it is not necessary to know the actual 
population size, since (N0/xN0) = (1/x).  In this case, the probability of crossing critical thresholds 
can be estimated using on index data without information on the total number of spawners.  If 
however, declines to specific absolute thresholds are of interest, total spawner counts are needed 
and it is also necessary to transform the spawner count into a count that reflects the total 
population rather than just spawners in a particular year.  See McClure et al. (2003) for a 
discussion of this transformation. 

 
Validation studies of diffusion approximations for salmon populations 

Here I review cross-validation studies of the performance of the diffusion approximation 
model for salmon data and populations, including populations experiencing density dependence.  
Holmes (2004) discusses evaluation of the diffusion approximation and estimation methods 
using simulated data.  This study used detailed population models for Upper Columbia River 
steelhead, Snake River fall chinook, and Snake River spring/summer chinook as examples.  The 
models were parameterized from survivorship and fecundity data from these ESUs.  The models 
include density-dependence in parr to smolt survivorship reflecting that found in low density 
Snake River chinook stocks (Achord et al. 2003).  The models also include sampling error in the 
range of that observed for redd-count data (standard error 0.3 to 0.85). 

The first question in this study was whether a diffusion approximation correctly described 
the behavior and probability of crossing thresholds for the age-structured models.  The first test 
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described in Holmes (2004) is an examination of the linearity assumptions inherent in the 
diffusion approximation.  This key test is somewhat technical, and is described in Holmes 
(2004).  The results of this test were that the linearity assumptions were satisfied for t > 5 years 
which means that (as is well-known) the diffusion approximation should be used to make 
medium and long-term projections not short-term projections (t < 5 years).  The second test was 
whether a diffusion approximation would properly characterize the probability that the simulated 
time series would cross a threshold (in this case, 90% decline) in different time frames.  This 
analysis is shown in Figure 3.  The gray line shows the actual probability of crossing the 90% 
decline threshold within different time frames (determined by repeating the salmon simulations 
1000s of times) versus the probabilities from a diffusion approximation.  This illustrates that the 
probability of 90% decline in these salmon time series can be described by a diffusion 
approximation. 

 
Figure 3.  Actual versus predicted probability of 90% decline within different time horizons.  
From Holmes (2004). 

 
Simply because a diffusion approximation exists which properly characterizes a 

particular population process does not mean that we can estimate the parameters for that process 
given realistic data constraints.  Holmes (2004) also studies estimation performance given data 
constraints faced by the PVA of Columbia River salmon stocks (McClure et al. 2003): 1) counts 
of only the spawning segment of the populations, 2) time series limited to 20 years, 3) severe 
age-structure perturbations in the beginning of some time series due to reproductive collapses 
during dam construction (Williams et al. 2001), and 4) high observation error in the spawner 
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counts.  Figure 4 shows box plots of the estimates of log(λ) following the estimation methods 
described above (also in McClure et al. 2003) for 1000 random simulations from the three 
species’ models.  The output from the models (spawner counts) was ‘corrupted’ by different 
levels of sampling error: age (meaning an age perturbation due to no reproduction in one year), 
low, medium and high observer error.  The dotted line in the graph shows the true value of 
log(λ).  In the box plots, the middle line is the median estimate of log(λ) and the box encloses 
75% of the estimates.  As can be seen in the figure, the runsum method for estimating log(λ) 
works for these simulated salmon time series even within the data constraints; the median 
estimate is the true value even with added observer error in the spawner counts. 
 

                     Spr/Sum Chinook           Fall Chinook                Steelhead 

 
Type of Error Added 

 
Figure 4.  Distribution of log(λ) estimates using runµ̂  from 1000 simulated time series from age-

structured models of Snake River spring/summer chinook, Snake River fall chinook, and Upper 
Columbia steelhead.  The models include density-dependent smolt survivorship.  From Holmes 
(2004). 
 

Figure 5 shows a similar analysis for the estimation of the process error, termed σ2.  Recall that 
the process error specifies the variability of potential future population trajectories and is a key 
parameter determining the probability of crossing thresholds.  This analysis indicates that for low 
observation error 2ˆ slpσ  provides an unbiased estimate of the true value of σ2, but as observation 

error increased, the estimate becomes increasingly biased.  ‘Medium’ represents the average 
estimate of typical observation error in the Columbia River data based on studies of observer 
error in redd count data (see discussion in Holmes 2004). 

 
                      Spr/Sum Chinook           Fall Chinook                Steelhead 

 
Figure 5.  Distribution of 2ˆ slpσ  estimates from 1000 simulated time series from age-structured 

models of Snake River spring/summer chinook, Snake River fall chinook, and Upper Columbia 
steelhead.  The models include density-dependent smolt survivorship.  From Holmes (2004). 
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Simulated data is very useful, however it is ‘simulated’ and certainly lacks some aspects 
of real time series data.  Another cross-validation (Holmes and Fagan 2002) involved testing the 
bias and precision of the diffusion approximation parameter estimates using hundreds of real 
time series.  The strategy was to use the first 15 years of a time series to predict the second 15 
years of the time series.  The bias and variability of these predictions could then be tested against 
the predicted bias and variability.  The two parameters tested were log(λ) and σ2, which appears 
in the probability of crossing thresholds metric along with log(λ).  Figure 6 shows the results of 
this analysis for the log(λ) estimates.  This analysis involved 30-year time series within a 1920 to 
1999 time frame. 

 
Figure 6.  Distribution of actual log(λ) estimates (bars) versus predicted distribution (solid black 
line from 147, 42 and 47 chinook, steelhead and Snake R spring/summer time series respectively.  
From Holmes and Fagan (2002). 
 

The close match between the observed and predicted distributions indicates that the log(λ) 
estimate was properly characterized in terms of its mean value (the peaks match).  That is the 
mean trend in the first half of the time series was the same as the mean trend estimated in the 
second half of the time series.  Figure 6 also demonstrates that the uncertainty in the log(λ) 
estimate (its variability) was also properly characterized since the width of the distributions 
match.  

That the mean trend in the first 15 years was the same as the mean trend in the second 15 
years appears at first glance to contradict the observations of strings of ‘good years’ versus ‘bad 

mind that this analysis used 30-year time series across the 1920 to 1999 
period.  It was asking about the average estimate across different time periods.  What about 
estimates only during a specific time period?  Figure 7 shows the difference between the trend in 
the first 15 years of a time series versus the following 15 years for specific time frames, i.e., not 
the average across all time periods, but the average if you only look at time series in a specific 
time period, say 1970-1999.  The solid line is a measure of the difference between the trends in 
the first 15 years versus the following 15 years.  Deviations above zero indicate that on average 
there was a more declining trend in the first 15 years versus the next 15; while deviations below 
zero means that on average the population was declining less in the first 15 years versus the next 
20 years.  These results show the average difference from all the West Coast time series put 
together.  What you can see is that across the West Coast, stocks were on average declining more 
in 1959-1973 versus in 1974-1993 while the opposite was true for 1964-1978 versus 1979-1998. 
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Figure 7.  The solid line measures the difference between the average trend in the first 15 years 
versus in the second 15 years from a collection of 30 year time series of West Coast chinook and 
steelhead stocks (200+ stocks).  “Mean of t-statistics” = 0 means that the average trend (across the 
whole West Coast) was similar in the first 15 years versus the following 15 years.  “Mean of t-
statistics” > 0 means that the on average stocks were declining more in the first 15 years relative to 
the following 15 years.  The year on the x-axis denotes the start of the middle of the 30-year 
segment.  The dashed line is the 95% confidence intervals for a random collection of time series, 
i.e., if there were no underlying environmental cycles causing “good” and “bad” series of years.  
Holmes unpublished analyses. 

 
It is tempting to attribute these ‘good’ versus ‘bad’ strings of years to an environmental 

driver, such as ocean conditions that one could presumably model.  While this may be the case, 
the data by themselves do not necessarily support this since this type of cycling good and bad 
strings of years can happen simply by chance in a collection of stochastic population time series.  
Indeed this is what Figure 2 illustrates.  The dotted lines in Figure 7 show the 95% confidence 
intervals assuming that the time series were all completely independent.  This is a conservative 
estimate since they are not all independent and the true 95% confidence intervals are farther 
apart.  What we can see is that the solid line falls within the conservative 95% confidence 
intervals suggesting this West Coast pattern of good and bad strings of years is not inconsistent 
with the hypothesis that it occurred by chance. 

The Holmes and Fagan (2002) analysis also looked how well the diffusion approximation 
predicted the probability of 90% decline.  This analysis searched for a difference between the 
mean diffusion approximation estimates of the probability of 90% decline and the observed 
mean probabilities within the collection of West Coast salmon time series.  Figure 8 shows the 
estimated versus actual mean probabilities.  The gray solid line (Dennis-Holmes) is the method 
used in the salmon PVA (McClure et al. 2003).  The close correspondence between the actual 
and observed indicates that first the diffusion approximation approach is correctly estimating the 
mean probabilities and second that the parameters of this approximation were not being 
systematically misestimated.  Note that this analysis focuses on mean estimates of probability of 
decline.  The issue of the variability in estimates of probability of decline is addressed later in 
this document. 
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Figure 8.  Probability of 90% decline versus observed probabilities with the West Coast salmon 
time series.  From Holmes and Fagan (2002). 

 
Why the diffusion approximation approach versus other approaches for describing trends 
and risks in salmon populations? 

Diffusion approximation approaches for estimation of risk metrics are grounded in 
theoretical work on stochastic population processes (reviewed in Holmes and Fagan 2002 and 
Holmes 2004).  These methods are one of the basic quantitative tools in population viability 
analysis and are featured in two current books on quantitative methods for analyzing population 
data (Lande et al. 2003, Morris and Doak 2003).  The long-term rate of population growth is 
termed λ and is one of the most commonly used risk metrics within the field of conservation 
biology.  Note that λ does not refer to a specific method of estimation, but rather simply the 
median or long-term trend in the population.  There are a variety of methods for estimating λ.  
The most familiar within the conservation biology literature is to calculate λ from estimated 
Leslie matrix models.  Diffusion approximation approaches present a way to estimate λ when 
only time series is available, and present a method for estimating the uncertainty in λ, which 
estimated Leslie matrix models do not provide. 

However in the context of salmon management, traditionally other metrics of risk and 
population trend have been used.  Some of the typical metrics that have been used or suggested 
are log recruits per spawner, SARs, 8-year geometric means of the natural cohort return rate, a 
simple regression of log natural abundance versus time, and residuals from a stock/recruit 
relationship.  Some of these (log recruits per spawner and a regression of the log abundance 
versus time) have a close relationship to λ and indeed can be viewed as alternate methods for 
estimating λ.  Many of the other methods, however, differ in a fundamental way in that they 
measure only a portion of the life cycle, i.e., survivorship or fecundity of only certain stages 
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rather than from spawner to spawner.  One of the key aspects of λ is that it integrates across the 
entire life-cycle.  It is not a measure of one stage’s survivorship or fecundity alone, but rather of 
the integration of survivorship and fecundity over the entire life cycle, much like a spawner-to-
spawner ratio does.  This is important when one is trying to assess a population rather than a 
particular stage since high survivorship in one stage can easily be offset by low survivorship in 
another stage. 

Below the methods that have been more common in salmon management are discussed in 
terms of how they relate to λ and the estimation long-term population trends. 

 
Log recruits to the spawning grounds per spawner 
 Log recruits (to the spawning ground) per spawner is another way to estimate log(λ) 
since the expected value of ln(R/S) = log(λ).  This can be derived from theory on stochastic 
population processes (see review by Caswell 2001, 14.3.2) and is essentially what is shown by 
Eqn 14.47 in Caswell (2001) – although this probably will not be transparent on first glance.  
Obviously the estimates you get of log(λ) from Eq. 5 versus ln(R/S) are going to be different for 
a specific finite time series; you expect this using different methods even though the expected 
values (the average estimates) are identical.   

If ln(R/S) can be used to estimate log(λ), why not use that since it is more familiar for 
fisheries biologists?  First it is not a more accurate nor less variable estimator – a simple 
simulation demonstrates this.  Second it requires much more data and effort to estimate – despite 
not providing an increase in precision in the estimation of log(λ).  To the extent that the age-at-
return data contains errors this adds additional errors to the ln(R/S) estimate.  Third, if we want 
to compare stock status for example to prioritize recovery actions, using a consistent method 
across all stocks is critical.  For the vast majority of stocks, the additional data to estimate R/S is 
not available so we can’t estimate ln(R/S).  Fourth, establishing the uncertainty in the estimate of 
ln(R/S) would be difficult.  We would either have to model the error in age-at-return data, which 
would require some ad hoc assumptions since we have limited information on this error, or we 
would have to bootstrap from limited age-at-return data.  Fifth, we would still have to estimate 
the process error and estimating this from ln(R/S) data alone is not possible if the population is 
affected by both process and non-process error. 
 
8-year geometric means of the natural cohort return rate 
 This metric uses the 8-year geometric mean of the spawner-to-spawner ratio for the 
natural spawning component of the population.  Like ln(R/S), this another way to estimate λ.  
The reasons for not using this metric are the same as those for not using ln(R/S); see above 
discussion. 
 
Smolt-to-adult ratios (SARs) 
 SARs, along with other measures of survivorship, are clearly important for analyzing 
how survivorship changes within a portion of the salmon life cycle.  However this metric leaves 
out the adult-to-smolt portion of the life cycle.  For the purpose of tracking the long-term trends, 
the entire life cycle, spawner-to-spawner, must be included since increases in smolt-to-adult 
survivorship could be offset by decreases in adult-to-smolt ratios.  Thus, SARs are not used for 
estimating long-term trends. 

Note also that SARs detailed types of data, which are not available for many stocks and 
makes their analysis regionally limited. 
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Simple regression of log natural abundance versus time 

λ is the regression of log spawner counts versus time for an infinite (i.e. very long) time 
series.  One way to estimate λ is to use the regression of log spawners versus time for the 
available, finite, time series.  This method could have been used, but simulations indicated that it 
gives estimates that are essentially the same as the runsum estimates (Figure 9).  Even if one did 
use a regression, one needs to use the methods in McClure et al (2003) to get the confidence 
intervals on λ.  The confidence intervals on the regression cannot be used since this attributes all 
error in the data to observation error.  This is incorrect; part of the error is process error and part 
of it is observation error, and one needs to use a statistical framework that properly apportions 
the error into these two types.  In addition, one still needs to obtain the estimates of 
environmental variability, which are critical for estimates of the probability of crossing 
thresholds.  The regression will not provide this since again a simple analysis of the variance of 
the residuals attributes error to observation not process error.  Holmes (2004) reviews the 
currently available methods for parameter estimation for population processes with process and 
observation error. 
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Figure 9.  Example of stimated log(λ) from 20-year segments in a time series with µ = -0.05 and 
σ2 = 0.02.  Segment 1 is year 1-20, segment 2 is year 2-21, segment 3 is year 3-22, etc.  This 
shows how the estimates vary depending on the segment observed.  The regression line (solid 
black) is from a regression of log counts versus time; the “runsum” method (red dashed) is that 
used in McClure et al. (2003) and for the Biological Opinion calculations. 

 
Residuals from a stock/recruit relationship 
 Residuals for a stock/recruit relationship give information on how conditions in one year 
or cohort deviate from some longer trend.  This can be useful for trying to determine if 
underlying changes for the long term trend has occurred, but is not useful for estimating the long 
term trend itself.  Potentially these residuals could be used to estimate the environmental 
variability, although this is certainly not straight-forward.  The variability in the residuals will be 
due not only to environmental variability but also variability due to density-dependence and the 
proclivity of salmon for “boom-bust” cycles.  These latter types of variability are important for 
the short-term variability in population trajectories, but tend to dampen out with time and are less 
important for the long-term variability in population trajectories.  Holmes (2004) gives an 
example of this using age-structured salmon models with density-dependence. Note also that 
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residuals for a stock/recruit relationship also require age-structure data, which makes their 
analysis limited to stocks with that kind of detailed data. 
 
Other methods 

The methods used in McClure et al (2003) require very simple data, spawner time series, 
however, there are populations with much better and more detailed data, especially age-at-return 
and age-specific survivorship data.  Incorporation of this data into the estimation of µ can 
increase the precision of the µ estimate, and consequently the λ estimate.  Hinrichsen (2002) 
discusses estimation of λ using age-at-return information and shows how using this information 
increases precision although there is no change in bias relative to the λ estimate in McClure et al. 
(2003).  The downside is that the methods in Hinrichsen (2002) are sensitive to high levels of 
observation error, for example, standard deviation of observation error greater than 0.7, which is 
certainly seen in redd count data (see discussion in Holmes 2004).  More analytical work needs 
to be done to get around this sensitivity to observation error, but certainly this research suggests 
that more precise λ estimates can be obtained for those stocks with more extensive data.  This is 
an area that is very promising, however, for regional analyses where we need to compare risks 
among stocks, some of which are data poor, we will have to continue to have and rely on 
methods that use only spawner time series for the sake of consistency. 

Lindley (2003) presents state-space estimation for noisy time series and offers this as 
alternative to the estimation methods used in McClure et al.  State-space estimation enables 
maximum-likelihood estimation of µ and σ2 from noisy data (such as we have for salmon data).  
It has a strong statistical foundation.  I have also been researching state-space estimation and 
tested Lindley’s algorithm in Holmes (2004) and found that it gives much worse estimates of σ2 
than 2ˆ slpσ  given the particular characteristics and constraints we face with salmon data.  The m 

estimates were similar to runµ̂ , however.  I have also investigated a slightly different state-space 
algorithm for estimation and found similar results.  State-space estimation is extremely 
promising, but a significant amount of research is still need to come up with algorithms that 
perform more robustly than the current methods in McClure et al. 
 
Summary 
 While these commonly used metrics are useful for other questions, such as looking for 
survivorship changes in a particular habitat or life stage or understanding the contributions of 
particular age classes to recruitment to the population, they are limited in terms of estimating 
long-term trends, either because they look at just a segment of the population, lead to λ estimates 
that are more variable than the λ estimates used in the Biological Opinion, or require data that is 
not available across all populations.  Furthermore these other methods do not lead us to an 
estimation of underlying variability in the population process (process error), which is essential 
for estimation of the probability of crossing critical population thresholds and for calculating the 
uncertainty in our risk estimates.  The methods used for estimating λ and extinction metrics as 
described in McClure et al. (2003) have been extensively studied and validated with West Coast 
salmon time series (Holmes & Fagan 2002) and also salmon-specific simulations which include 
density dependence (Holmes 2004). 
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The time frame of ones data and  λλ estimates 
 Typically choices must be made about the data, specifically the years, to use to estimate 
λ.  The point estimate of λ will depend on the time frame used, however keep in mind that in 
general the point estimate of λ should never be used alone since by itself the point estimate does 
not give an indication of the uncertainty in this estimate.  One way present the uncertainty is to 
use confidence intervals, but confidence intervals are often misleading since they give the 
erroneous impression that the true value is equally likely within a large interval.  Likelihood 
profiles or posterior probability distributions of λ are much more useful and give a rapid feel for 
the uncertainty in the estimate of λ.  If one uses a posterior probability distribution, it becomes 
clear that the estimate of λ is not so sensitive to the time frame of the data or the addition of one 
extra year of data as would appear when only point estimates are presented. 

This being said, selection of a reasonable time frame is very important.  The following 
considerations should generally be kept in mind when selecting the time frame to use:  a) more 
data is better, b) the time frame should be representative of historical trends, i.e. not be 
dominated by ‘good’ or ‘bad’ conditions and not dominated by an isolated perturbation and c) 
for the sake of uniformity and comparison, the time frame should be consistent across stocks.  In 
McClure et al. (2003) the effect of using different time frames for estimation, specifically 1980-
2000 versus 1960-2000, on risk metrics for the Columbia River ESUs is shown.  The differences 
were not statistically significant nor in any consistent direction, i.e. for some stocks the 1980-
2000 time period gave slightly more severe risk estimates and for others it gave less severe 
estimates. 

From a management standpoint, λ estimates that vary widely depending on the exact 
starting year of the time series are problematic, and research showing that the estimates are 
statistically optimal while satisfying does not lessen this practical problem.  There are a couple of 
strategies that I have proposed to deal with this:   

1) Use robust estimators of the mean for the µ estimates.  Currently in Eqn. 5, a straight 
mean is used, however a straight mean is highly sensitive to outliers.  My preliminary 
tudies of the effect of different start years on λ estimates using Snake River 
spring/summer chinook time series indicated that a robust estimator of the mean 
eliminated much of the problem of λ estimates that vary widely depending on the start 
year.  There are a variety of robust mean estimators; a trimmed mean is the simplest.   

2) I examined the 1970s to present data throughout the Columbia River and found that the 
1980-present data was affected by an especially unusual series of years between 1978-
1982 or so.  The estimates using the 1980-present time frame appeared to be more 
different that one would expect compared to estimates using any other time frame.  My 
initial analysis suggested that 1976-present would generally be a better time frame to use, 
although this does suffer from dam effects in the early years for some stocks.  The 1984-
present data could also be used to avoid the 1978-82 period, however, a strong argument 
can be made that this overly emphasizes a period characterized by bad ocean conditions. 

 
II.  ACCOUNTING FOR UNCERTAINTY IN RISK ESTIMATES 

A certain amount of variability in estimated parameters and risk metrics is an 
unavoidable aspect of the analysis of stochastic population processes, simply due to the nature of 
these processes.  One of the strengths of diffusion approximation methods is that the statistical 
distributions of the estimated parameters are known.  As a result, the uncertainty in the estimated 
risks can be calculated.  This is often not the case for other PVA approaches.  Even though the 
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uncertainty in diffusion approximation risk metrics can be calculated, this uncertainty is 
definitely high.  In this situation, examining either the likelihood functions or the posterior 
probability distributions for the risk metrics, rather than simply the point estimates and 
confidence intervals, will help to clarify the level of data support for different true risk levels.  
Statistical decision theory (e.g. Berger 1985 is one of many texts on decision theory) provides a 
framework for integrating estimates of the data support for different risk levels with the 
consequences of true risk levels.  Wade (2000) and Dorazio and Johnson (2003) provide recent 
discussions of this Bayesian decision framework in conservation biology and resource 
management contexts.   

The idea in a nutshell is to estimate the probability that the risk metric, for example λ, is 
within particular ranges that are important from a management perspective.  For example: 

 
< 0.9 0.15 
0.9 – 0.95 0.3 
0.95 – 1.0 0.5 

Probability 
the true λ is 

in these 
ranges > 1.0 0.05 

Table 1.  Estimated probabilities that λ is within different ranges. 
 
These probabilities are estimated using the posterior probability distribution that is estimated 
from the data.  Figure 10 gives an example of the posterior probability distribution for λ 
estimated from a 38-year times series of spring chinook in the Upper Columbia River basin (data 
from T. Cooney, NMFS).  The probability that λ is within the range a to b is calculated by 
integrating the posterior probability distribution between a and b. 
 

 
Figure 10.  Estimated posterior probability distribution for λ for Upper Columbia spring chinook.  
From Holmes (2004). 
 
There are a variety of ways these probabilities could be used.  They might be used alone 

and qualitative thresholds set, such as if the probability that λ is less than 0.95 is greater than 
some threshold, then an such and such actions can (or cannot) occur.  Note that the probability of 
a low λ can be high due to certainty that λ is low or due to uncertainty about λ.  Thus, such a 
strategy leads to caution in the face of high uncertainty.  A more quantitative, decision-theoretic, 
approach can be taken if the probability that actions will be ‘sufficient’ (however that might be 
defined) can be calculated given different true λs.  For example, 
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  Probability of action being ‘sufficient’ 
  Action A Action B Action C 

< 0.9 0.3 0.1 0 
0.9 –0.95 0.5 0.3 0.2 
0.95-1.0 0.8 0.6 0.5 

λ range 

> 1.0 1.0 1.0 0.8 
Table 2.  Estimated probabilities of action sufficiency given different true λ ranges. 

 
These probabilities are multiplied by the probability of λ being within those ranges and then 
summed over all ranges to give the total probability that actions are ‘sufficient’.  This probability 
incorporates the uncertainty in the estimated λ: 
 

Probability of action being ‘sufficient’ 
Action A Action B Action C 
0.64 0.45 0.35 

Table 3.  Probabilities in Table 2 multiplied by those in Table 1 and summed over all λ ranges. 
 

An example where the probabilities in Table 2 would be relatively easy to calculate is different 
harvest levels.  Instead of giving a simple ‘yes/no’ answer as would be the case if using point 
estimates of λ, this approach quantifies the uncertainty in our estimate of λ and emphasizes that 
there is not a simple “100% or 0%” probability of an action being effective. 
 Probabilities of crossing thresholds are notoriously uncertain and variable, and analyzing 
the uncertainty connected with a proposed probability metric (e.g. ‘probability of extinction’) is 
especially critical when using these metrics.  Figure 11 shows the estimated probability density 
distributions for the probability of 90% decline within 25, 50 or 100 years given a 20-year time 
series with an estimated λ of 1 or 0.93.  The distributions when the estimated λ is 1 are fairly flat 
or U-shaped.  This indicates that there is not much information about what the probability of 
90% decline is.  The estimation of the probability of 90% decline can be improved by using an 
informative prior on the process error.  Twenty years of data is not sufficient for accurate process 
error estimates.  If one argues that the variability driving long-term dynamics is similar across 
chinook throughout the basin, then one might use as an informative prior the distribution of 
process error estimates for a large number of stocks throughout the basin.  Figure 12 shows how 
the estimation of the probability of 90% decline improves using an informative prior.  Now it 
appears that estimation of the risk of 90% decline in 50 or 100 years is fairly informative for the 
stock with a low λ.  For the stock with a λ equal to 1,  50 and 100-year probabilities are 
uncertain, but 25-year probability are much better. 
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Figure 11.  Estimated posterior probability distribution of the probability of 90% decline in 25, 50 
and 100 years given a 20 year time series with estimated µ of 0 or –0.072 and an estimated process 
error of 0.08 and estimated non-process error of 0.71.  A uniform prior on the process error was 
assumed. 
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Figure 12.  Estimated posterior probability distribution of the probability of 90% decline in 25, 50 
and 100 years given a 20 year time series with estimated µ of 0 or –0.072 and an estimated process 
error of 0.08 and estimated non-process error of 0.71.  A highly informative prior on the process 
error was assumed. 

 
 These last two figures focus on the probability of 90% decline in 25, 50 or 100 years.  
There are other ways to look at the probability of 90% decline that can be more informative.  For 
example, here is an analysis of the probability of an eventual 90% decline for based on the Upper 
Columbia spring chinook time series (from Holmes 2004).  The estimated probability of eventual 
90% decline is almost 1.0, that is it is almost certain to occur (Figure 13, top), however there a 
great deal of uncertainty as to when this will occur (Figure 13, bottom) except that it is highly 
likely within 100 years.  Figure 13, bottom panel, shows the expected probability of 90% decline 
within a given time frame.  From the figure, on average there is a 70% probability of a 90% 
decline within 50 years for this population and an average 80% probability that the 90% decline 
occurs within 100 years. 
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Figure 13.  Estimated posterior probability distribution of eventual 90% decline in the  Upper 
Columbia spring/summer chinook (top panel) and the probability that this decline has occurred 
within different time frames (bottom panel).  From Holmes (2004). 

 
The time to 90% decline can then be put into Table form similar to Table 1 for λ ranges (Table 
4) which can then be combined with a Table similar to Table 2 for the probability that an action 
will be sufficient if 90% decline does not occur until after x years. 

 
> 25 yrs 0.7 
> 50 yrs 0.38 
> 75 yrs 0.2 

Probability 
90% decline 
only after x 

years > 100 yrs 0.18 
 

Table 4.  Probability that 90% decline does not occur until after x years.  From Figure 13, bottom 
panel. 

 
Quasi-extinction threshold versus absolute extinction 

Throughout this paper, the probability of 90% decline is discussed.  The probability of 
90% can be estimated for stocks for which we only have index data and not total spawner 
information.  Thus it can be more widely applied.  However, decline to specific critical 
population sizes are also of great importance in PVA analyses.  Although estimating extinction 
to 1 individual is a popular risk metric, and unfortunately sometimes mandated, caution is 
required when using the diffusion approximation is to estimate extinction to very low numbers 
since factors that drive dynamics at very low population sizes (such as demographic 
stochasticity) and the catastrophes often associated with ultimate extinction will likely be poorly 
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represented in a time series of a relatively larger population declining to low numbers.  There 
have been a wide variety of papers published on this in the conservation biology literature.  The 
general recommendation is to estimate the probability of decline to some critical population size 
(quite a bit greater than 1); this is termed a ‘quasi-extinction’ threshold.  Fagan et al. 
(unpublished manuscript) studied a collection of actual time series of species that went extinct 
and compared diffusion approximations for quasi-extinction thresholds versus extinction to 1 
individual.  This analysis found that quasi-extinction estimates (to a size much greater than 1) 
using diffusion approximations fit the observed data, but that extinction estimates (to 1 
individual) were very poor and underestimate the true risk. 

With this in mind, one might ask why was the probability of decline to 1 individual 
estimated in the McClure et al. analysis.  The reasons for this were four-fold.  1) The analysis 
was focused on estimating risks if current conditions continue as they appeared in the time series 
data.  It was recognized that this would tend to underestimate risks if factors such as density-
depensation occurred as the population got small, however baseline estimates of risks under 
current conditions are required in order to make meaningful statements about risks under 
hypothetical future scenarios, such as lower population growth rates as the population gets small.  
2)  The probability of 90% decline does not incorporate the actual population size.  The 
implications of a 90% decline of a population of 10 individuals is quite different than a 90% 
decline for a population of 100,000 individuals.  The probability of decline to 1 individual 
provided a risk metric that incorporated both the overall rate of decline of the population and the 
population size.  Thus we could then compare ESUs in terms of a risk metric that integrates these 
two factors –regardless of whether this is an underestimate of the true probability of extinction.  
3) Any other extinction threshold we could have specified would have been arbitrary – given the 
information we had on critical population size.  Decline to 1 individual is meaningful for all 
populations.  4) The Fagan et al. analysis had one notable exception, i.e. one population where 
the probability of extinction would be properly estimated.  That was the one population time 
series that followed an actual salmonid extinction (sockeye); the rest of the time series followed 
bird and reptile extinctions. 
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